Contact graphs of unit sphere packings revisited

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Contact graphs of unit sphere packings revisited

The contact graph of an arbitrary finite packing of unit balls in Euclidean 3-space is the (simple) graph whose vertices correspond to the packing elements and whose two vertices are connected by an edge if the corresponding two packing elements touch each other. One of the most basic questions on contact graphs is to find the maximum number of edges that a contact graph of a packing of n unit ...

متن کامل

Sphere packings revisited

In this paper we survey most of the recent and often surprising results on packings of congruent spheres in d-dimensional spaces of constant curvature. The topics discussed are as follows: Hadwiger numbers of convex bodies and kissing numbers of spheres; Touching numbers of convex bodies; Newton numbers of convex bodies; One-sided Hadwiger and kissing numbers; Contact graphs of finite packings ...

متن کامل

Contact Numbers for Congruent Sphere Packings in Euclidean 3-Space

The contact graph of an arbitrary finite packing of unit balls in Euclidean 3-space is the (simple) graph whose vertices correspond to the packing elements and whose two vertices are connected by an edge if the corresponding two packing elements touch each other. One of the most basic questions on contact graphs is to find the maximum number of edges that a contact graph of a packing of n unit ...

متن کامل

Sphere Packings

This paper is a continuation of the first two parts of this series ([I],[II]). It relies on the formulation of the Kepler conjecture in [F]. The terminology and notation of this paper are consistent with these earlier papers, and we refer to results from them by prefixing the relevant section numbers with I, II, or F. Around each vertex is a modification of the Voronoi cell, called the V -cell ...

متن کامل

Local Symmetry of Unit Tangent Sphere Bundle With g- Natural Almost Contact B-Metric Structure

We consider the unit tangent sphere bundle of Riemannian manifold ( M, g ) with g-natural metric G̃ and we equip it to an almost contact B-metric structure. Considering this structure, we show that there is a direct correlation between the Riemannian curvature tensor of ( M, g ) and local symmetry property of G̃. More precisely, we prove that the flatness of metric g is necessary and sufficien...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Geometry

سال: 2013

ISSN: 0047-2468,1420-8997

DOI: 10.1007/s00022-013-0156-4